
Growing Twigs2005-12-06, Pisa 1/53

Growing Twigs

An Introduction to XML::Twig

Growing Twigs2005-12-06, Pisa 2/53

Content

● What is XML::Twig
– A description of the module, why use it

● Working with XML::Twig
– Resources, Installation, Example code

● Behind the scenes
– Development process, why open-source

Growing Twigs2005-12-06, Pisa 3/53

What is XML::Twig

● XML::Twig: XML, The Perl Way
– a Perl module

– to process XML

– hybrid processing model, perlish API

● Alternatives
– Perl Modules: XML::LibXML, XML::Simple, XML::SAX

– XSLT

– Java, Python, Ruby...

Growing Twigs2005-12-06, Pisa 4/53

A Perl Module

● a Perl Module is a library that can be used from
a perl program

● most perl modules (several 1000s) can be
found on CPAN (http://cpan.org)

● like a lot of modules, XML::Twig is Object
Oriented:
use XML::Twig;

my $twig= XML::Twig->new(@arguments);

http://cpan.org/

Growing Twigs2005-12-06, Pisa 5/53

Processing XML

● XML::Twig can parse XML and process it
● I use it to:

– generate XML from IEEE Standards in FrameMaker

– generate XHTML from IEEE Standards in XML

– extract definitions from IEEE Standards in XML and store
them into a data base

– move data between databases on different OSs

– power the templating system for my wife's website

– ...

Growing Twigs2005-12-06, Pisa 6/53

XML Processing Models

● Stream Mode (SAX)

– during parsing, call methods for each parsing event
(open tag, text, close tag)

– low memory usage, complex to use
● Tree Mode (DOM)

– load the XML in memory, as a tree of objects

– select nodes using navigation or queries (Xpath)

– transform using delete, move, insert methods

– needs more memory, easier to use

Growing Twigs2005-12-06, Pisa 7/53

XML Tree Model

<body><p>text</p><p>foo bar baz</p></body>

document

<body>

<p> <p>

'text' 'foo '

'bar'

' baz'

mixed content

Growing Twigs2005-12-06, Pisa 8/53

XML::Twig Processing Model

● Tree mode, using a simplified DOM

● Possibility to add handlers to elements

– selected by element name, or complex condition,

– called when the element is finished parsing

– handler has access to the tree for the element
● Possibility to build the tree only for certain elements

– other elements are ignored or output as-is

Growing Twigs2005-12-06, Pisa 9/53

Other XML::Twig Features

XML::Twig is designed to be practical
● whitespace handling
● comment/processing instructions handling
● encoding handling
● rich API (over 500 methods)

Growing Twigs2005-12-06, Pisa 10/53

Other Perl Modules

● XML::LibXML
– based on libxml2 (http://xmlsoft.org)

– very powerful, fast, supports Xpath, DOM and lots of other
W3C standards

● XML::Simple
– converts data-oriented XML to a Perl data structure

● XML::SAX
– event-driven, low-level

– lots of helper modules

Growing Twigs2005-12-06, Pisa 11/53

XSLT

● W3C's language for processing XML
● Works well
● The code is in XML
● You don't get CPAN!

Growing Twigs2005-12-06, Pisa 12/53

Using XML::Twig

● Installing XML::Twig
– installing the pre-requisites: expat, XML::Parser

● Resources
– finding information on how to use the module

● Examples
– using XML::Twig with data-oriented XML

– using XML::Twig with document-oriented XML

Growing Twigs2005-12-06, Pisa 13/53

Installing XML::Twig

● Pre-requisites:
– perl! (5.005 minimum, 5.8.3+ recommended)

– expat: the low-level XML parsing library

– XML::Parser: the Perl wrapper for expat

– optional Perl modules (XML::XPath, LWP,
HTML::Entities)

Growing Twigs2005-12-06, Pisa 14/53

Installing Perl Modules

● the old-fashioned way
tar zxvf XML-Twig-3.22.tar.gz
perl Makefile.PL
make
make test
make install

● cpan / cpanplus
cpan XML::Twig

● distribution packages
urpmi perl-XML-Twig

Growing Twigs2005-12-06, Pisa 15/53

Resources

● The README file

install instructions, dependencies, links

● perldoc XML::Twig

reference doc

● http://xmltwig.com

docs, tutorial, FAQ, examples, development version

● http://perlmonks.org

http://xmltwig.com/

Growing Twigs2005-12-06, Pisa 16/53

The Most Important Slide

● Always, ALWAYS, check the data first:

– parse the XML before doing anything with it

– if you can, refuse the XML if it is not valid

– if you cannot, write code to fix it, then validate it
● It doesn't matter who generated the XML, another

company, another department, your department, YOU
...

● ONLY work on clean data

● You WILL hate character encodings

Growing Twigs2005-12-06, Pisa 17/53

Examples Introduction

2 Examples: data XML and document

 Data-oriented vs Document-oriented XML

● Text is messy, data is simpler!

● Data has more structure

● Data has no mixed-content

● Differences in usage

● Some tools work best (or only!) for data-
oriented XML

● Most XML these days is data-oriented

Growing Twigs2005-12-06, Pisa 18/53

Data-oriented XML

● Data Base dumps/extracts
● Standard Documents
● Serialized objects
● XML-RPC
● log files
● Configuration files

Growing Twigs2005-12-06, Pisa 19/53

Time

for a

quick

break!

Growing Twigs2005-12-06, Pisa 20/53

Stop

Using

<XML>

Everywhere

Please!

Growing Twigs2005-12-06, Pisa 21/53

●Documents
●Configuration files
●Data
●Serialized objects

XML is Everywhere

Growing Twigs2005-12-06, Pisa 22/53

● XML is turned into a Perl Data
Structure

● Works reasonably

but...

XML is UGLY!

Configuration Files

Growing Twigs2005-12-06, Pisa 23/53

XML Version

<config logdir="/var/log/foo/"
 debugfile="/tmp/foo.debug">
 <server name="sahara" osname="solaris"
 osversion="2.6">
 <address>10.0.0.101</address>
 <address>10.0.1.101</address>
 </server>
 <server name="gobi" osname="irix"
 osversion="6.5">
 <address>10.0.0.102</address>
 <address>10.0.0.103</address>
 </server>
</config>

Growing Twigs2005-12-06, Pisa 24/53

YAML Version

Debugfile: '/tmp/foo.debug'
logdir: '/var/log/foo/'
server:
 gobi:
 address:
 - 10.0.0.102
 - 10.0.0.103
 osname: irix
 osversion: 6.5
 sahara:
 address:
 - 10.0.0.101
 - 10.0.1.101
 osname: solaris
 osversion: 2.6

Growing Twigs2005-12-06, Pisa 25/53

Try this at home

 perl -MYAML -MXML::Simple \

 -e 'print Dump XMLin "conf.xml"'

Growing Twigs2005-12-06, Pisa 26/53

XML for Data

Data lives in...

Data Bases!

Growing Twigs2005-12-06, Pisa 27/53

Data Bases

●Fast
●Reliable
●Multi-user
●Scalable!

Growing Twigs2005-12-06, Pisa 28/53

XML for data

It's just like text files...

...only slower!

Growing Twigs2005-12-06, Pisa 29/53

Exporting XML

● XML::Generator::DBI
● XML::Handler::YAWriter
use DBI;
use XML::Generator::DBI;
use XML::Handler::YAWriter;

my $dbh= DBI->connect(...);

my $ya = XML::Handler::YAWriter->new(AsFile => "-");
my $generator = XML::Generator::DBI->new(
 Handler => $ya, dbh => $dbh
);
$generator->execute('SELECT * FROM data');

Growing Twigs2005-12-06, Pisa 30/53

Conclusion

● Use XML when it makes sense
● Don't use it just because it's a

buzzword

THINK!

Growing Twigs2005-12-06, Pisa 31/53

Typical Use of Data-oriented XML

XML is an EXCHANGE format
● Extract data

– Put it in a Data Base

● Fix the data
● Add data
● Avoid XML transformations!

– SQL vs XPath

Growing Twigs2005-12-06, Pisa 32/53

Example 1: XML Catalog

<?xml version="1.0" encoding="utf-8"?>
<catalog>

 <plant id="id_001">
 <common>Bloodroot</common>
 <botanical>Sanguinaria canadensis</botanical>
 <zone>4</zone>
 <light>Mostly Shady</light>
 <price>$2.44</price>
 <availability>2005-03-05</availability>
 </plant>

 ...
 <plant id="id_036">
 <common>Cardinal Flower</common>
 <botanical>Lobelia cardinalis</botanical>
 <zone>2</zone>
 <light>Shade</light>
 <price>$3.02</price>
 <availability>2005-02-05</availability>
 </plant>
</catalog>

Growing Twigs2005-12-06, Pisa 33/53

Example 1: Store the XML in a DB

● Store records from the catalog in a table in a
database

● The catalog file can be very large, so do not
load it in memory all at once

Growing Twigs2005-12-06, Pisa 34/53

Example 1: Code

#!/usr/bin/perl

use strict;
use warnings;
use DBI;
use XML::Twig;

my $CATALOG_FILE = "plant_catalog.xml";
my $DB_FILE = "plant_catalog.db";

my $dbh= DBI->connect("dbi:SQLite:dbname=$DB_FILE","","");
my $sth= $dbh->prepare("INSERT into plant
 (id, common, botanical, zone, light, price, availability)
 VALUES(?, ?, ?, ?, ?, ?, ?)");

XML::Twig->new(twig_handlers => { plant => \&store_plant })
 ->parsefile($CATALOG_FILE);

sub store_plant
 { my($t, $plant)= @_;
 # the map... returns the list of text of all children of plant
 $sth->execute($plant->id, map { $_->text } $plant->children);
 $t->purge;
 }

Growing Twigs2005-12-06, Pisa 35/53

Example 2: Convert Currency

Convert the prices in dollars to prices in euros, add the
currency as an attribute:

<price>$3.02</price>

becomes

<price currency="EUR">2.58</price>

The code will be a filter that will only update the price
elements and leave everything else untouched.

Growing Twigs2005-12-06, Pisa 36/53

Example 2: code

#!/usr/bin/perl

use strict;
use warnings;
use XML::Twig;

my $CATALOG_FILE = "plant_catalog.xml";

a rather silly example of extracting information from a web page
nparse creates a new twig and parses the argument (an html file here)
my $RATE = XML::Twig->nparse("http://www.x-rates.com/index.html")
 ->first_elt('a[@href="/d/USD/EUR/graph120.html"]')
 ->text;
warn "rate: 1 EUR = $RATE USD\n";

my $catalog= XML::Twig->new(twig_roots => { price => \&price, },
 twig_print_outside_roots => 1,
);

$catalog->parsefile($CATALOG_FILE);

exit;

Growing Twigs2005-12-06, Pisa 37/53

Example 2: code (cont.)

sub price

 { my($twig, $price)= @_;

 my $value= $price->text;

 if($value=~ /^\$(.*)$/)
 { my $dollar_value= $1;
 my $euro_value= sprintf("%5.2f", $dollar_value / $RATE);
 $price->set_text($euro_value);
 $price->set_att(currency => "EUR");
 }
 else
 { die "wrong dollar value '$value'\n"; }

 $price->print;

 }

Growing Twigs2005-12-06, Pisa 38/53

Example 3: Update the data

● Update the catalog file with data from an other
file

● 2 input XML files:
– catalog

– updates

● Output: updated catalog file
● The update file can be loaded in memory, not

the main catalog

Growing Twigs2005-12-06, Pisa 39/53

Example 3: XML update

<updates>

 <plant id="id_013">
 <price>$7.22</price>
 </plant>

 <plant id="id_033">
 <availability>2005-05-28</availability>
 </plant>

 <plant id="id_021">
 <price>$4.20</price>
 <availability>2005-05-08</availability>
 </plant>

</updates>

Growing Twigs2005-12-06, Pisa 40/53

Example 3: code

#!/usr/bin/perl

use strict;
use warnings;
use XML::Twig;

my $CATALOG_FILE = "plant_catalog.xml";
my $UPDATE_FILE = "updates.xml";

my $updates= XML::Twig->new->parsefile($UPDATE_FILE);

my $catalog= XML::Twig->new(# element => subroutine
 twig_handlers => { plant => \&plant, },
 pretty_print => 'indented',
);

$catalog->parsefile($CATALOG_FILE);
$catalog->flush;

exit;

Growing Twigs2005-12-06, Pisa 41/53

Example 3: code (cont.)

sub plant
 { my($twig, $plant)= @_;

 my $id= $plant->att('id');
 my $update= $updates->elt_id($id); # updates is global

 if($update)
 { foreach my $updated ($update->children)
 { my $field = $updated->tag;
 my $original = $plant->first_child($field);
 $original->replace_with($updated);

 warn "updating $id - $field: ", $original->text,
 " => ", $updated->text, "\n";
 }
 }
 $twig->flush; # prints the XML so far, and frees the memory
 }

Growing Twigs2005-12-06, Pisa 42/53

Document-oriented XML

● Important in publishing
● Allows:

– independence from vendors

– re-purposing of documents or parts of documents

● Often includes embedded data (part numbers,
bibliographical items...)

● Often used to generate HTML or PDF

Growing Twigs2005-12-06, Pisa 43/53

Processing Document-oriented XML

● Need to be able to work at 4 levels:
– document level: to grab cross-references, number clause

titles... often in a separate pass,

– complex element level: tables, lists with internal
references, chapter,

– simple element processing: change a tag into an other
tag (often adding the initial element as a class attribute),

– within text: generate links from URLs, or from text
elements, parse element text or attribute values.

Growing Twigs2005-12-06, Pisa 44/53

Document Example

<?xml version="1.0" encoding="utf-8"?>
 <plant id="id_001">
 <common>Bloodroot</common>
 <botanical>Sanguinaria canadensis</botanical>
 <zone>4</zone>
 <light>Mostly Shady</light>
 <price>$2.44</price>
 <available>2005-03-05</available>
 <desc>A perennial <i>native</i> with a solitary white
 flower with golden stamens around a solitary pistil on a smooth
 stalk. 5-10 inches tall, this early plant has a reddish-orange
 juice down to the root (hence the name). The large blue/grey
 to green basal leaf is palmately scalloped into 5-9 lobes. See
 http://www.main.nc.us/naturenotebook/plants/bloodroot.html and
 http://en.wikipedia.org/wiki/Bloodroot
 </desc>
 </plant>

Growing Twigs2005-12-06, Pisa 45/53

HTML Generation Code
#!/usr/bin/perl

use strict;
use warnings;
use XML::Twig;
use Regexp::Common 'URI';

my $PLANT_FILE="plant.xml";

my $twig= XML::Twig->new(
 twig_handlers => {
 # here handlers are declared as anonymous subs, $_ is the element
 common => sub { $_->set_tag('h1') }, # $_ is the element
 botanical => sub { $_->set_tag_class('p') }, # set tag to 'p' and
 zone => sub { $_->set_tag_class('p'); # class to the tag
 $_->prefix("Grows in zone ");
 },
 light => sub { $_->set_tag_class('p'); },
 price => sub { $_->set_tag_class('p'); },
 available => sub { $_->set_tag_class('span');
 $_->prefix(", available ");
 $_->move(last_child => $_->prev_sibling);
 },

Growing Twigs2005-12-06, Pisa 46/53

HTML Generation Code (cont.)

 desc => sub { $_->set_tag_class('p');
 $_->insert_new_elt(before => h2 => "Description");
 $_->subs_text(qr/($RE{URI}{HTTP})/,
 '&elt(a =>{ href => $1 }, $1)'
);
 },
 plant => sub { $_->set_tag('body'); },
 },
 pretty_print => 'indented',
);

$twig->parsefile($PLANT_FILE);

add the html "wrapping"
my $html= $twig->root->wrap_in('html');
my $head= $html->insert_new_elt(first_child => 'head');

my $name= $twig->first_elt('h1')->text;
$head->insert_new_elt(first_child => 'title', $name);

$twig->print;

Growing Twigs2005-12-06, Pisa 47/53

Behind the Scenes

The history of XML::Twig
● Why did I write XML::Twig?
● Why is it Open-Source?
● Development Process
● ToDo list

Growing Twigs2005-12-06, Pisa 48/53

Why did I write XML::Twig

● Timeline:

– 1998-02-10: the XML recommendation is published

– 1998-03-??: XML::Parser published on CPAN

– 1998-10-??: XML::Twig development starts

– 1998-10-21: XML::DOM on CPAN

– 1999-10-04: XML::Twig 1.6 on CPAN

– 2005-10-14: XML::Twig 3.22 on CPAN
● In 1998 there were no XML module that would do what

I wanted, I had to write my own!

Growing Twigs2005-12-06, Pisa 49/53

Why is XML::Twig Open-Source?

● Instead of having to find the bugs, people
(sometimes!) find them for me

● A good way to give back to the Open Source
community that gave me Linux, Apache,
PostgreSQL, SQLite, vi, Firefox, OpenOffice...
and Perl!

● It's fun!

Growing Twigs2005-12-06, Pisa 50/53

Development Process

● It has evolved with time:
– in 1998 there was no Test Driven Development

● Now:
– revision control (CVS)

– tests added for every bug and new feature
(Devel::Cover used to check coverage)

● Still very much a Cathedral, not a Bazaar

Growing Twigs2005-12-06, Pisa 51/53

ToDo List

●Write a proper Xpath parser

needs to be used both in streaming mode, to trigger
handlers and in normal mode, on an element or
document

●Add “multi-parsing”

start several parsers (in threads) and allow them to
rendez-vous to perform actions on all of them

example: merging sorted XML files

Growing Twigs2005-12-06, Pisa 52/53

The End

Questions?

Growing Twigs2005-12-06, Pisa 53/53

Grazie

